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Global Ocean Climate Change

a. Sea surface temperature change
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c. Oxygen concentration change at 200-600m
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Bopp et al. [2013]

b. Sea surface pH change
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d. Integrated net primary productivity change
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North Pacific a
region of strong
ocean change.

However:

Coastal oceans
poorly resolved in
Global Earth
System Models.

They disagree on

2 magnitude and/or
direction of change
in key ecosystem
properties, NPP
gcm2ry and O,

[T



Temperature and O,

Ocean O, content Organism O, requirement
decreases with Temperature rises with Temperature
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Oxygen

Habitat: A Metabolic Index

Temperature

The , defined as
ratio of potential O, supply to
resting O, demand by organism:

| ®=A B°pO, exp(E, | k,T)

Environmental parameters:
Oxygen pressure (pO,)
Temperature (T)

Physiological parameters:
Oxygen sensitivity
-Height of curve (1/A,)
Temperature sensitivity
-Slope of curve (E,)

Deutsch et al. [2015]
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Historical Variability

In the Southern California Current, decadal changes in small pelagic fish
abundance are correlated with regional O, changes.
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None of these species has measured Metabolic Index traits.
Strategy: Determine species for which habitat boundaries and time
variability can be explained by same set of traits (A, E,).
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Dynamic Habitat
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How has (and will)
climate change cause
aerobic habitat
change and
associated shifts in
species geographic
range or abundance?

These questions
require models that
resolve coastal
processes with high
fidelity to (often
sparse) observations.
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Model
Validation

Model physical solution
validated against
historical hydrographic
and satellite observations:
Temp, Salinity, SSH,
Currents, Eddy energy,
nutrients, NPP, oxygen,
CO2 parameters

Biases generally low,
particularly for well
sampled fields needed for
Metabolic Index.

Renault et al. [in review]
Deutsch et al. [in review]
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Aerobic Habitat

a Mean aerobic habitat

Lots of habitat

\‘

2N
—
Little habitat —
. % Chordata |
50 ‘ ~ Cnl%lraré:aa
B Crustacea |
® Mollusca
30 Y Tunicata
o 20¢
10—v A
0

-02 00 02 04 06 08 1.0
E.: Temperature dependence (eV)

Most species in CCS
likely experience
strong variability in
aerobic habitat.

Can we see this

reflected in species
abundance?

Howard et al. [in review]



2om  Historical Anchovy
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Historical variation of
anchovy abundance
strongly correlated to
aerobic habitat fluctuations
from decadal climate
variability.

Howard et al. [in review]
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Historical variation of
anchovy larval abundance
in southern CCS strongly
correlated to aerobic
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Oxygen loss in the CCS

Climate models show large and consistent reductions of O, globally and in the CCS.
Dynamical downscaling with ROMS suggest they are even underestimated.
The role of winds opposes warming trend, but is small compared to remote effects.
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Annual CCS anomaly,

Warming of the CCS

Warming in upper 200m consistent across models.
Magnitude from Stratification forcing is slightly reduced by local wind changes.
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Geographic Range Contraction
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Ecosystem Implications
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Outlook

New project to measure the Metabolic Index
parameters for >10 CCS species

Collaboration with Brad Seibel (USF) and
Martha Sutula (SCCWRP)

Funding from NOAA and CA SeaGrant

Strong connection to management agencies
via SCCWRP



1)

2)

3)

4)

Conclusions

Historical reconstructions of the California Current with eddy-
resolving hindcast model reproduce long-term mean and inter-
annual variability in key ecosystem variables.

Downscaling projections of future climate change with global Earth
System Models show large-scale wind changes to have a modest
impact on bulk ecosystem metrics, including NPP. Caveat:
potential changes in coastal wind drop-off?

Climate forcing of sub-surface ocean properties, e.g. Oxygen and
pH (not shown) derive primarily from basin-scale impacts on
stratification and properties imported into CCS.

Intensification of temperature-dependent hypoxia explains large
past changes in Northern Anchovy, and appears to be largest
perturbation to CCS ecosystem, with large but differential impacts

on species habitability.
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Historical Hindcast & Validation

Surface Forcing

Dust

Ocean Boundaries

Physics: ROMS(12 km

Benthic Fluxes

Iron input: Severm

Physics: WRF

Fe: CESM

) + WOA
Biogeochemistry: WOA + CESM

N//

Nitrogen loss: Middelburg [1996]

ann [2010]

Regional Ocean Modeling System
(ROMS)

- Eddy-resolving ocean model

- 2-decade Hindcast 1994-2013

Forcing

- Atmospheric model (WRF) 6km
atmospheric winds, radiation, E-P

- Physical boundary conditions from
global reanalysis (Mercator)

-  Biogeochemical boundary
conditions from climatology

Validation
- Historical hydrography
- Satellite remote sensing

Ocean ecosystem model (BEC)

- 3 phytoplankton, 1 zooplankton

- Biogeochemical cycles of C, O,, P,
N, Fe, Si



Future Projection & Attribution

By isolating responses to distinct climate forcings  Downscale Global Model

(wm_d, warming, chemistry), we can attribute the project‘ions by applying
leading causes of CCS ecosystem change

anomalies at surface and open
boundaries, based on Earth
System Models

5 Global Models (CMIP5):
GFDL, MPI, IPSL, Hadley,
NCAR, + Model mean

Attribution experiments:

Wind Forcing
At,, At

orcing onIy

+ Boundary AT

__Biogeochemical tracers only Stratification only (S)
\__ Anutr, AO,, ACO,, ARk .
M o Winds only (W)
\__ A BGC tracers only (B)
v All forcings (A)

Howard, Frenzel, Deutsch, et al. [in prep]



Historical Validation

We compare model solutions to mean and variability of historical hydrographic profiles.
The California Current is far less under-sampled than most of the ocean.

50°N

Nitrate

500N Oxygen

Deutsch et al. [in review]



Oxygen and Upwelling
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Vertical sections of
annual mean O,, from
ROMS (right columns)
and WOD (right
columns) along three
repeat hydrography
lines that span the
latitude range of the
CCS reveal the role of
upwelling in bringing
low O, into shallow
environments on the
continental shelf.

Deutsch et al. [in review]



N Varlablllty

WOD13

Variability of subsurface
(100m) O, is high
throughout the CCS, and
is well reproduced by
hindcast simulations.

The primary factor driving
these changes is
fluctuations in the depth
of the pycnocline.

Standard Deviation

This is revealed by the
strong correlation
between O, and density
in both observations and
simulations.

0 Deutsch et al. [in review]



Ecosystem Model

Air — Sea
exchange

Terrestr.+
Atm. Input

Phytoplankton

Smaill Plankton,
Diatoms, Cocco.,
Diazotrophs

NPP
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Labotatory measurements of
Metabolic rate and critical O, (P,)

at multiple temperatures.
Database: >70 diverse species,
globally distributed, from 5 phyla,
wide size range.

Zooplankton Shrimp

( ’/ \ - E
1 Nautilus



Oxygen

Vulnerable vs Resilient

Changing Habitability depends on:

2) Environmental change (Temp, O,)
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Net Primary Productivity

Spatial distribution and Seasonal Cycle of Net Primary Productivity.
NPP = 2_] {Mmax*YJ (I)*mln(x(Nl,J))*BJ}
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Nutrient vs Light Limitation
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i
40 f - Depth of the vertical
| maximum of Chlorophyll
350”,}' -------- Reflects the trade-off between
200N light (high at surface) and

nutrients (high at depth).

Model fidelity to observations
implies the model captures a
realistic trade-off between
nutrient limitation and light
limitation.
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Deutsch et al. [in review]



Nitrogen vs Iron Limitation

NPP = 5, {40, *1; (D {min(M(N; By}

N limitation | 500N Fe limitation

0.6

(@] ‘ - (0] —
140w 130°W 120°W 140w 130°w 120°W

Frequency of limitation by Nitrogen (left) and Iron (right) for the model’s dominant
primary producer, diatoms. The frequency of limitation is based on 5-day average
output, and weighted by biomass. Inset shows offshore band of relatively frequent
Fe limitation along the central CCS, as observed by Firme et al. [2008].

Deutsch et al. [in review]



NPP: Interannual Variability

Model exhibits a high correlation between subsurface density and NPP,
indicating the strong influence of pycnocline depth on nutrient supply.
Similar correlations seen in observations.
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Upwelling changes
are subtle, and mostly
seasonal, not annual
mean.

Robust tendency for
more in spring and
less in summer.

Stratification
significantly offsets
wind effect in spring,
and is decisive in
summer!
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Changing NPP

Like wind, changes in NPP also modest (<5%) and mostly seasonal shifts.
Remote nutrient redistribution and stratification (+Temp) more important than winds!
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The role of wind structure

Global models capture large-scale wind changes, but not regional details.
Could those matter? Experiments with the drop-off in wind strength along the coast...
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Renault et al. [2016] Nature Geoscience



Vertical velocity (md™)

NPP (102mmol m™s™

NPP Response to Wind Pattern

Vertical velocities

Coastal wind drop-off
doesn’t change the
total upwelling, but
shifts the balance
between coastal and
offshore, consistent

20  with expectations.

Despite the same total

upwelling, NPP is
impacted by wind
structure. The
reduction is mediated
by eddies.
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